
MoSKito-Essential Configuration Guide

After reading this section, you will know...

... how to configure MoSKito with external configuration file, via Config
 system.ureMe

In this section:

Configuration file and location
Sections

ThresholdsAlerts
AlertHistory
NotificationProviders

Thresholds
Threshold
Threshold Guards

Accumulators
Accumulation amount
Accumulators

Gauges
Gauges
DefaultZones
Full example

Tracers
Plugins
Builtin Producers

Since v2.x, MoSKito may be configured via external configuration file. This configuration is based on ConfigureMe - the state of the art
JSON configuration framework.

MoSKito Config is build of different configuration objects, which makes it easier to change and maintain. Each object can be configured separately.

Below is a typical configuration, different sections of it will be discussed separately.

https://configureme.org
https://configureme.org
http://www.configureme.org
http://www.configureme.org

{
 "@thresholdsAlertsConfig": {
 "@notificationProviders": [
 {
 "className": "net.anotheria.moskito.core.threshold.alerts.
notificationprovider.LogFileNotificationProvider",
 "parameter": "MoskitoAlert",
 "guardedStatus": "GREEN"
 },{
 "className": "net.anotheria.moskito.core.threshold.alerts.
notificationprovider.MailNotificationProvider",
 "parameter": "leon@leon-rosenberg.net",
 "guardedStatus": "RED"
 },{
 "className": "net.anotheria.moskito.core.threshold.alerts.
notificationprovider.SysoutNotificationProvider",
 "parameter": "",
 "guardedStatus": "GREEN"
 }
],
 "@alertHistoryConfig": {
 "maxNumberOfItems": 500,
 "toleratedNumberOfItems": 550
 }
 },
 "@accumulatorsConfig" : {
 "accumulationAmount": 500,
 "@accumulators": [
 {
 "name": "Configured SessionCount Cur 5m",
 "producerName": "SessionCount",
 "statName": "Sessions",
 "valueName": "cur",
 "intervalName": "5m",
 }
]
 },
 "@thresholdsConfig": {
 "@thresholds": [
 {
 "name": "Configured-5m-ThreadCount",
 "producerName": "ThreadCount",
 "statName": "ThreadCount",
 "valueName": "Current",
 "intervalName": "5m",
 //timeUnit can be ignored here
 "@guards": [
 {"value": "30", "direction": "DOWN", "status": "GREEN"},
 {"value": "30", "direction": "UP", "status": "YELLOW"},
 {"value": "45", "direction": "UP", "status": "ORANGE"},
 {"value": "60", "direction": "UP", "status": "RED"},
 {"value": "100", "direction": "UP", "status": "PURPLE"},
]
 }
]
 },

Configuration file and location
MoSKito is configured based on @ConfigureMe Annotations:

@ConfigureMe(name="moskito")
public class MoskitoConfiguration {
 @Configure
 private ThresholdsAlertsConfig thresholdsAlertsConfig = new ThresholdsAlertsConfig();
 @Configure
 private ThresholdsConfig thresholdsConfig = new ThresholdsConfig();
 @Configure
 private AccumulatorsConfig accumulatorsConfig = new AccumulatorsConfig();
...

ConfigureMe expects the Configuration file to be named and looks for it in the classpath. However, it is possible to give this file a moskito.json
different name (or use xml or properties instead of json).

MoskitoConfiguration configuration = new MoskitoConfiguration();
ConfigurationManager.INSTANCE.configureAs(configuration, "anothername");
MoskitoConfigurationHolder.INSTANCE.setConfiguration(configuration);

Sections

ThresholdsAlerts

The config contains two sections: and . ThresholdsAlerts AlertHistory NotificationProviders

 "@thresholdsAlertsConfig": {
 "@notificationProviders": [NOTIFICATIONPROVIDER],
 "@alertHistoryConfig": { }
 }

AlertHistory

The config defines how many items are stored in the in-memory alert history, and can be displayed in MoSKito-WebUI:AlertHistory

 "@alertHistoryConfig": {
 "maxNumberOfItems": 500,
 "toleratedNumberOfItems": 550
 }

Attribute Value Default

maxNumberOfItems Number of items that can be stored in the alert history. 200

toleratedNumberOfIt
ems

Tolerated overload. The AlertHistory will be shortened only after the size growth above toleratedNumb
erOfItems.
This helps to reduce the amount of list operations.

220

NotificationProviders

The built-in notification system allows to configure multiple notification providers. Notification providers will be triggered as soon as a threshold
changes its status and the change breaks the limits of this notification provider.

Each notification provider is configured with the following attributes:

Of course, you can setup the configuration object entirely by yourself (write the needed code) or get current configuration object from Moskit
and alter it. oConfigurationHolder

However, do it at the start of the system, since many of the configuration options can't be changed on the fly (yet). Still, you can change
others.

Attribute Value

className Name of the class that implements net.anotheria.moskito.core.threshold.alerts.NotificationProvider

parameter Customization of the provider. This attribute is provider-specific.

guardedStatus The triggering status.

 iParameter nterpretation:

ClassName Interpretation

net.anotheria.moskito.core.threshold.alerts.notificationprovider.LogFileNotificationProvider Name of the Logger.

net.anotheria.moskito.core.threshold.alerts.notificationprovider.MailNotificationProvider Comma-separated list of recipient's email addresses.

net.anotheria.moskito.core.threshold.alerts.notificationprovider.SysoutNotificationProvider Ignored.

Thresholds

The thresholds config contains a list of threshold objects. This is another way to define thresholds.

 "@thresholdsConfig": {
 "@thresholds": [THRESHOLD]
 },

or, in Java words:

public class ThresholdsConfig {

 /**
 * Configured thresholds.
 */
 @Configure
 private ThresholdConfig[] thresholds;

Threshold

Each Threshold contains the following info:

{
 "name": "Configured-5m-ThreadCount",
 "producerName": "ThreadCount",
 "statName": "ThreadCount",
 "valueName": "Current",
 "intervalName": "5m",
 //timeUnit can be ignored here
 "@guards": [GUARD]
}

Attribute Value

What is a Threshold?

Thresholds continuously watch a single producer and give a signal when its performance changes.

For more info, read the of .Thresholds section MoSKito Concepts

Thresholds may also be .added via MoSKito-Inspect

https://confluence.opensource.anotheria.net/display/MSK/MoSKito+Concepts#MoSKitoConcepts-thresholds
https://confluence.opensource.anotheria.net/display/MSK/MoSKito+Concepts
https://confluence.opensource.anotheria.net/display/MSK/6.+Thresholds#id-6.Thresholds-mskwebui_adding_thresholds

name The name of the value for AlertHistory, Logs and WebUI

producerName Name (id) of producer. Exact match required!

statName Name of the StatValue. Exact match required!

valueName Name of the Value. Exact match required!

intervalName Name of the interval the Threshold is tied to.

timeUnit TimeUnit if applicable (for example, MILLISECONDS or SECONDS) See net.anotheria.moskito.core.stats.TimeUnit

guards List of GUARD objects.

Threshold Guards

For example:

 {"value": "30", "direction": "DOWN", "status": "GREEN"},
 {"value": "30", "direction": "UP", "status": "YELLOW"},
 {"value": "45", "direction": "UP", "status": "ORANGE"},

Attribute Value

value The value of the associated (producer | stat | statvalue) tuple, which changes the Threshold's status.

direction Direction in which the value is passed: UP means the current value is higher than the guard value, DOWN - lower than the guard
value.

status The status that the Threshold is set to after the guard is triggered.

Accumulators

The section configures accumulators, setting the default .accumulators accumulationAmount

Accumulation amount

 "@accumulatorsConfig" : {
 "accumulationAmount": 500
 },

The controls the amount of values an accumulator can store. The real amount can be accumulationAmount
10% higher, because 10% overload is allowed to reduce number of list operations.

Accumulators

A guard is a trigger (set of conditions) that changes the status of a Threshold.

Accumulators store the performance history of a producer and display accumulated data in charts.

For more info, read about Accumulators in MoSKito Concepts.

https://confluence.opensource.anotheria.net/display/MSK/MoSKito+Concepts#MoSKitoConcepts-accumulators
https://confluence.opensource.anotheria.net/display/MSK/MoSKito+Concepts

 "@accumulatorsConfig" : {
...
 "@accumulators": [
 {
 "name": "Configured SessionCount Cur 5m",
 "producerName": "SessionCount",
 "statName": "Sessions",
 "valueName": "cur",
 "intervalName": "5m"
 }
 ...
]
 },

Basically, accumulators' section contains the same values for each accumulator as for each threshold:

Attribute Value

name The name of the value for WebUI

producerName Name (id) of the producer. Exact match required!

statName Name of the StatValue. Exact match required!

valueName Name of the Value. Exact match required!

intervalName Name of the interval the accumulator is tied to.

timeUnit TimeUnit if applicable (for example, MILLISECONDS or SECONDS) See net.anotheria.moskito.core.stats.TimeUnit

Gauges

Gauges are a visualization tool for representation of current state of a producer in relation to it's expected min and max states.

Gauges can be used in Dashboards.

Gauges

Gauges are configured in their own section in the configuration file.

"@gaugesConfig": {
 "@gauges": [GAUGE],
 "@defaultZones":[ZONE]
}

Each gauge is configured in following way

{
 "name": "Name of the gauge is displayed in the gauge itself and should be short",
 "caption": "Caption of the gauge block, has more chars to fit",
 "@minValue" : GAUGEVALUE,
 "@currentValue" : GAUGEVALUE,
 "@maxValue" : GAUGEVALUE,
 "@zones": [ZONE]
}

A can be a constant or a reference to a producer. In the following example a static gauge is configured.GAUGEVALUE

"@minValue": {
 "constant": 0
},
"@currentValue": {
 "constant": 70
},
"@maxValue": {
 "constant":100
},

One might argue, that a static gauge doesn't make much sense, but it demonstrates the principle and you can use it to present a value which is
produced outside of the system.

A GAUGEVALUE can be tight to a producer/stat/value tuple as in following example:

{
 "name": "Running",
 "caption": "Running Threads",
 "@minValue": {
 "constant": 0
 },
 "@currentValue": {
 "producerName": "ThreadStates",
 "statName": "RUNNABLE",
 "valueName": "Current",
 "intervalName": "1m"
 },
 "@maxValue": {
 "producerName": "ThreadCount",
 "statName": "ThreadCount",
 "valueName": "current",
 "intervalName": "default"
 }
}

Remember you can use either keyword or and If a gauge value config contains everything constant producerName, statName valueName. constant
else will be ignored for this value.

Besides the values the zones of each gauge can be configured. If you don't provide gauge specific configuration, are applied. If you defaultZones
provide no either, the pre-configured default zones are used, which are hardwired in GaugeAPIImpl.defaultZones

DefaultZones

You can configure default zones which would be applied to all your gauges, if the gauges don't have explicit zone configuration.

"@gaugesConfig": {
 "@gauges": [GAUGE],
 "@defaultZones":[ZONE]
}

For example:

"@defaultZones":[
 {
 "color": "orange",
 "left": 0.85,
 "right": 0.9
 },
 {
 "color": "red",
 "left": 0.9,
 "right": 1
 }
]

Full example

Below example configuration of gauges part.

"@gaugesConfig": {
 "@gauges": [
 {
 "name": "Constant",
 "@minValue": {
 "constant": 0
 },
 "@currentValue": {
 "constant": 70
 },
 "@maxValue": {
 "constant":100
 },
 "@zones":[
 {
 "color": "green",
 "left": 0,
 "right": 0.25
 },
 {
 "color": "yellow",
 "left": 0.25,
 "right": 0.5
 },
 {
 "color": "orange",
 "left": 0.5,
 "right": 0.75
 },
 {
 "color": "red",
 "left": 0.75,
 "right": 1
 }
]

 },
 {
 "name": "Sessions",
 "@minValue": {
 "constant": 0
 },
 "@currentValue": {
 "producerName": "SessionCount",
 "statName": "Sessions",
 "valueName": "cur",
 "intervalName": "default"

 },
 "@maxValue": {
 "producerName": "SessionCount",
 "statName": "Sessions",
 "valueName": "max",
 "intervalName": "default"
 }
 },
 {
 "name": "Memory",
 "caption": "Used memory",
 "@minValue": {
 "constant": 0
 },
 "@currentValue": {
 "producerName": "Heap memory",
 "statName": "Heap memory",
 "valueName": "Used Mb",
 "intervalName": "default"
 },
 "@maxValue": {
 "producerName": "JavaRuntimeMax",
 "statName": "JavaRuntimeMax",
 "valueName": "Current Mb",
 "intervalName": "default"
 }
 },
 {
 "name": "Blocked",
 "caption": "Blocked Threads",
 "@minValue": {
 "constant": 0
 },
 "@currentValue": {
 "producerName": "ThreadStates",
 "statName": "BLOCKED",
 "valueName": "Current",
 "intervalName": "1m"
 },
 "@maxValue": {
 "producerName": "ThreadCount",
 "statName": "ThreadCount",
 "valueName": "current",
 "intervalName": "default"
 }
 },
 {
 "name": "Running",
 "caption": "Running Threads",
 "@minValue": {
 "constant": 0
 },
 "@currentValue": {
 "producerName": "ThreadStates",
 "statName": "RUNNABLE",
 "valueName": "Current",
 "intervalName": "1m"
 },
 "@maxValue": {
 "producerName": "ThreadCount",
 "statName": "ThreadCount",
 "valueName": "current",
 "intervalName": "default"
 }
 }
],
 "@defaultZones":[
 {
 "color": "orange",
 "left": 0.85,
 "right": 0.9

 },
 {
 "color": "red",
 "left": 0.9,
 "right": 1
 }
]

},

Tracers

Tracers allow you to monitor who is executing a place of code, in code. Tracers are typically switched on/off from inspect on Runtime with the bTracer
utton in SingleProducerView in MoSKito Inspect:

However, there are some configuration options for Tracers too.

Tracers are configured via the element in MoSKito Configuration.tracingConfig

Here an example:

"@tracingConfig": {
 "tracingEnabled": true,
 "loggingEnabled": true,
 "inspectEnabled": true,
 "maxTraces": 50,
 "tracers": [],
 "shrinkingStrategy": "KEEPLONGEST"
}

All tracing configuration options are changeable at Runtime. The options mean in particular:

Attribute Value

tracingEna
bled

true/false. If false tracing won't be active.
Tracing can generate some additional
load, mainly due to StackTrace creation.
So it's wise to switch it off if not needed.

loggingEna
bled

true/false. If true every trace will be
logged out into a Logger called MoSKitoT
racer.

inspectEna
bled

true/false. If true support for inspection in
MoSKito Inspect is enabled

maxTraces max number of traces (calls with
parameters and stacktraces) per Tracer.

To reduce array operations MoSKito will allow Tracers to get 10% more traces than
allowed, before cutting them.

tracers Predefined Tracers. This is basically a
list of ProducerIds.

Actually, the idea of tracers is that you want them dynamically, but you can add them in
configuration too.

shrinkingSt
rategy

"FIFO" or "KEEPLONGEST" - defined by
net.anotheria.moskito.core.config.tracing.
ShrinkingStrategy

When amount of tracers exceeds the tolerated amount of traces, MoSKito will start to
remove some traces to save memory space. There are two possible strategies here,
FIFO -> First in First Out or KEEPLONGEST. Keeplongest sorts the traces by execution
duration and keeps those which lasts longer. This is useful in tracking anomalies.

Plugins

Plugins section allows to load custom software aka plugins.

 "@pluginsConfig": {
 "@plugins": [
 {
 "name": "EmbeddedCentralConnector",
 "configurationName": "none",
 "className": "net.anotheria.moskito.central.connectors.embedded.
EmbeddedConnector"
 }
]
 }

For each plugin, the following values are configured:

Attribute Value

name The name of the plugin for plugin view.

configurationName The name of the plugin configuration. The configuration is of plugin-special type.

className The name of the plugin class. The class should implement net.anotheria.moskito.core.plugins.Moskitoplugin

Builtin Producers

Builtin Producers section allows to configure which builtin producers should be enabled by default. If you don't set anything, all producers are enabled
(default value = true).

Example:

 "@builtinProducersConfig": {
 "javaMemoryProducers": false,
 "javaMemoryPoolProducers": false,
 "osProducer": false
 }

Supported attributes are:

Attribute Producers

javaMemoryProducers Memory based on Runtime.getRuntime().freeMemory

javaMemoryPoolProducers Memory based on GC Memory Pools / Spaces

javaThreadingProducers ThreadCountProducer
ThreadStatesProducer

osProducer OS Stats (on *nix only)
incldung min/max files etc

runtimeProducer Runtime - process name and uptime

mbeanProducers Automatical monitoring of all mbeans. Requires additional configuration (MBeanProducerConfig)

	MoSKito-Essential Configuration Guide

