
Availability testing with DistributeMe
DistributeMe comes with a set of availability testing utils which are realized by interceptors. An additional availability testing utility is the
ChaosMonkeyAgent which is currently developed and will be described in a separate article.

Why availability test?
How does it work
What is in the package
Configuration

Enabling interceptors
Configuration file
Properties
Configuration options

Running

Why availability test?

DistributeMe provides a lot of feature to make your service - routing, failover strategies, concurrency control and so on. However, how do you never fail
know they do what you think they do? And do you know how your system will really behave if a service if not their due to network failure or flipy cable.
Another common scenario is a slow answering service, whether due garbage collection (full gc loops tend to eat up all cpu) or slow database or whatever
you've got behind the service.

The availability testing utils and there to help you to tune your application to deal with such failures before they actually happen.

How does it work

Current availability testing utils are which are added on client or server side, and modify service behavior transparently to your application. Interceptors

What is in the package

Currently there are two classes of availability testing interceptors, those configured by a config file and those configured by system properties. System
properties may be easier to configure, but configuration files allow more complex scenarios, as well as change of the value in runtime, due to ConfigureMe
configuration reload features. All built-in interceptors are located in package in distributeme-core org.distributeme.core.interceptor.availabilitytesting
module.

There are now following interceptors available:

Interceptor Class Name Purpose

ClientSideSlowDownByConfigurationInterceptor Slows the request down on the client side. Target service and duration are configured by
configuration file.

ClientSideSlowDownByPropertyInterceptor Same as above, but configured by properties.

ServerSideSlowDownByConfigurationInterceptor Slows the request down on the client side. Target service and duration are configured by
configuration file.

ServerSideSlowDownByPropertyInterceptor Same as above, but configured by properties.

ServiceUnavailableByConfigurationInterceptor Cancels all requests to the service with the service unavailable exception as if the service wouldn't
run at all.

ServiceUnavailableByPropertyInterceptor Same as above, but configured by properties.

FlippingClientSideSlowDownByConfigurationInterc
eptor

Same as ClientSideSlowDownByConfigurationInterceptor but the interceptor only acts with a
given chance.

FlippingServerSideSlowDownByConfigurationInterc
eptor

Same as ServerSideSlowDownByConfigurationInterceptor but the interceptor only acts with a
given chance.

FlippingServiceUnavailableByConfigurationIntercep
tor

Same as ServiceUnavailableByConfigurationInterceptor but the interceptor only acts with a given
chance.

https://confluence.opensource.anotheria.net/display/DISTRIBUTEME/Interceptors
http://www.configureme.org

Configuration

Enabling interceptors

To enable availability testing interceptors generally, they have to be configured in the distributeme.json as all other interceptors:

{
 registryContainerPort: 9229,
 registryContainerHost: "localhost",

...
 "interceptor.1": "org.distributeme.core.interceptor.availabilitytesting.
ServiceUnavailableByPropertyInterceptor",
 "interceptor.2": "org.distributeme.core.interceptor.availabilitytesting.
ServerSideSlowDownByPropertyInterceptor",
 "interceptor.3": "org.distributeme.core.interceptor.availabilitytesting.
ServerSideSlowDownByConfigurationInterceptor",
...
}

of course interceptors can be also placed under different environments as all other configurations with . ConfigureMe

{
...
 "test": {
 "flip": {
 "interceptor.1": "org.distributeme.core.interceptor.availabilitytesting.
FlippingServiceUnavailableByConfigurationInterceptor",
 "interceptor.2": "org.distributeme.core.interceptor.availabilitytesting.
FlippingServerSideSlowDownByConfigurationInterceptor",
 "interceptor.3": "org.distributeme.core.interceptor.availabilitytesting.
FlippingServerSideSlowDownByConfigurationInterceptor",
 },
 }
}

in this case the interceptors will only become active if the component (server or client) is running in test_flip configureme environment. However, the alone
presence of the interceptor is not sufficient to make it work. The interceptor (at least the prepackaged) need at least the service id of the target service,
otherwise they would intercept all traffic which may be counter-productive.

There are generally two ways to configure an interceptor, configuration file or properties (There is a flavor of each interceptor that supports either
configuration).

Configuration file

The configuration file which is used to configure the interceptors is called .availabilitytesting.json

Here is an example:

{
 "serviceIds": ["org_distributeme_test_echo_EchoService", "org_distributeme_test_whatever_FooService"],
 "slowDownTimeInMillis": 10000,
}

Please note that this configuration is reread continuously (all 10 seconds approx.) and can be changed . on-the-fly

Of course the standard ConfigureMe environment cascading is supported:

http://www.configureme.org

{
 "serviceIds": ["org_distributeme_test_echo_EchoService", "foo"],
 "slowDownTimeInMillis": 10000,

 "test": {
 "flip":{
 "slowDownTimeInMillis": 1000,
 "flip70":{
 "flipChanceInPercent": 70,
 },
 "flip10":{
 "flipChanceInPercent": 10,
 },
 },
 }
}

In order to use the configuration you have to submit your environment to the process. You can either do it directly (), via not recommended

org.configureme.ConfigurationManager.INSTANCE.setDefaultEnvironment(...)

or, just supply the appropriate system property ():recommended

java -Xmx256M -Xms64M -classpath $CLASSPATH -Dconfigureme.defaultEnvironment=test_flip_flip10 <classname>

Properties

Using system properties is a bit less flexible, because you have actually to restart the process to make them work, but easier for a quick test, especially
server side. The names of the properties are defined in the file

org.distributeme.core.interceptor.availabilitytesting.Constants. You can simply submit them to the process start command.

./start.sh -DavailabilityTestingServiceId=org_distributeme_test_echo_EchoService org.distributeme.test.echo.
generated.EchoServer

Configuration options

Following configuration options are supported right now:

Name in
Configuration
File

Name of the
Property

Meaning, Values

serviceIds availabilityTestingServi
ceId

Service ids. It can be one, a comma separated list, or asterisk. Asterisk means any.

slowDownTimeIn
Millis

availabilityTestingSlow
DownTimeInMillis

Time by which the execution will be slowed down. Default is 10.000 ms.

flipChanceInPerc
ent

availabilityTestingFlipC
hanceInPercent

Chance in percent for service to flip. Flip chance is only a probability, a flip chance of 50% will not
guarantee that every second request fails. The flip chance is implemented as

boolean flip = random.nextInt(100)<flipChance.

Running

Running availability testing is not much different from running normal DistributeMe Service environment. For my test runs, I created a script (which is part
of distributeme-test) project:

#!/bin/bash
export VERSION=1.2.1-SNAPSHOT
CLASSPATH=test/appdata:target/distributeme-test-$VERSION-jar-with-dependencies.jar
echo CLASSPATH: $CLASSPATH
java -Xmx256M -Xms64M -classpath $CLASSPATH -Dconfigureme.defaultEnvironment=test $*

Now I only need to start the server:

./start.sh -DavailabilityTestingServiceId=* org.distributeme.test.echo.generated.EchoServer

and the client

./start.sh org.distributeme.test.echo.MakeRemoteCallsForever

and the party starts.

Availability testing interceptors has been added to DistributeMe in version 1.2.1-SNAPSHOT

	Availability testing with DistributeMe

