
anotheria.net 
ano-tecture

Universal Architecture for Portals
by Leon Rosenberg

anotheria.net
2008-2010

Donnerstag, 20. Mai 2010



TOC

‣ Target group

‣ Requirements

‣ Solution

‣ Case studies

Donnerstag, 20. Mai 2010



Target group

‣ B2C portals.

‣ Service oriented portals. 

‣ From startups to matures.

‣ International (or internationalized) portals.

Donnerstag, 20. Mai 2010



Tweaks

‣ High read to write ratio.

‣ High traffic due to many lightweight requests.

Donnerstag, 20. Mai 2010



Requirements

‣ Scaleability.

‣ High availability.

‣ Growth support.

Donnerstag, 20. Mai 2010



Solution

‣ The 4-Layer-n-Tier architecture.

‣ Clearly defined layer. Layer separation by 
responsibility.

‣ Flexible setups. 2Tier, 3Tier, 4Tier... n-Tier.

Donnerstag, 20. Mai 2010



Rendering and UI

Layer Architecture

Business Logic

Persistence

Presentation Logic

presentation rendering, markup 
generation, ajax-connector

presentation logic, stateful services, per-
user-caching, portal-api

business logic, object-cache, single 
responsibility services

daos, fs-reader/writer, connectors

visibility

visibility

visibility

each layer has its own, unique responsibility. responsibilities are defined on the following slides.

Donnerstag, 20. Mai 2010



Rendering and UI layer

‣ Produce HTML or other (js, css, json, xml) 
markup out of the business data for the 
customer.

‣ Parse incoming parameters.

‣ Support in browser flow control.

Donnerstag, 20. Mai 2010



Presentation logic.

‣ Service / information syndication for 
presentation needs.

‣ Per user caching.

‣ Validation.

‣ Provide testable interface for the frontend logic.

Donnerstag, 20. Mai 2010



Business logic.

‣ Providing enterprise view on the application.

‣ Control and manage persistence layer.

‣ Provide services to the presentation.

‣ Caching. 

Donnerstag, 20. Mai 2010



Persistence

‣ Saving and loading objects.

‣ Performing queries.

Donnerstag, 20. Mai 2010



Code modeling

Business Logic

Persistence

Rendering and UI

Presentation Logic

depends on

depends on

depends on

The application is enterprise driven. 
This means that the business layer is the central part of the 
application.
The application is modeled at the business level as services and 
dependencies/communication between services.
Each service can have it’s own data model, but there is no common 
data model which is valid for the whole application.
As a consequence - each service can have it’s own database and can 
scale independent of other services.
Another consequence - no joins needed.

Donnerstag, 20. Mai 2010



Examples

Donnerstag, 20. Mai 2010



Architecture I (2T)

Storage / DB tier

Presentation tier

Rendering and UI

Presentation Logic

ResourcesDatabase (postgres, mysql, etc) RAID, FS

Business Logic

Persistence

Vendor protocol

Suitable for small projects, low-traffic portals, 
prototypes etc.

Has scaleability limits.

Fast to develop, easy to deploy - the java 
answer to LAMP.

Easy to migrate to 3T if the layer separation has 

been conducted strictly.

Donnerstag, 20. Mai 2010



Example I : Technical Site

Storage / DB tier

Presentation tier

Rendering and UI

ResourcesDatabase (postgres, mysql, etc) RAID, FS

Vendor protocol

A content-less special site, like moskito-
webui, marsnews etc

ano-maf ano-web

Presentation logic

Persistence

Business

ano-plass
optional layer

optional layer

both layers can be merged

ano-prise ano-search

ano-db

stateful services, paging, sorting

search, case, messaging, lightweight storage

storage

Donnerstag, 20. Mai 2010



Presentation tier asg - generated code

asg - generated code

Example II : WebShop

Storage / DB tier

Rendering and UI

ResourcesDatabase (postgres, mysql, etc) RAID, FS

Vendor protocol

webshop like blackstone, golf-industries 
etc

ano-site ano-web

Presentation logic

Persistence

Business

ano-plass
basket etc

storage

CMS

ano-maf

wares managemt, order management

content editing,
wares, order management

wares and basket management for user

Donnerstag, 20. Mai 2010



CMS - APP

Example III: Small Portal
Presentation tier

asg - generated code

asg - generated code

Storage / DB tier

Rendering and UI

ResourcesDatabase (postgres, mysql, etc) RAID, FS

Vendor protocol

startup portal
(c-date at the beginning, language broker)

ano-site

Presentation logic

Persistence

Business

ano-plass

Presentation

rendering of content in different languages Persistence

Business

content

Storage / DB tier
content

content deploy (file copy)

Vendor protocol (FS)Business

Persistence

ano-prise ano-search

ano-db

content

portal logic 
and functionality

Syndication of different services and services and content.

Rendering, html, ajax, etc

Donnerstag, 20. Mai 2010



Application tier

Architecture II (3T)

Storage / DB tier

Presentation tier

Rendering and UI

Presentation Logic

ResourcesDatabase (postgres, mysql, etc) RAID, FS

Business Logic

Persistence

Vendor protocol

Suitable for mid range projects, mid/high-
traffic portals.

Scales better.

Performs!

RMI over DistributeMe

presentation, controllers, action, markup

presentation logic and stateful services, per user caching

business logic, object caching

persistence

Donnerstag, 20. Mai 2010



Arch II - Deployment View

http

administrative, http, ssh incoming request, http

infra pool

dist collector

moskito

static pool

static01 static02 ...

Loadbalancer

web pool

web01 ...web02 web n

payment pool

pay01 pay02

http httphttp http

picture upload,
picture download,
external api,
restful api,
etc

special poolspecial poolspecial pool

s01 s02

jdbc

backup

rmi rmi

vendor

rmi

backup

Connectors

Payment Mail ...

NAS Database

db01 db02

app pool

app01 app02

DiMe registry

... app n app00-failover

monitoring data flow

monitoring data flow

application data flow

Legend: 

Donnerstag, 20. Mai 2010



Architecture II - Nodes
‣ Presentation-tier nodes (web, pay, ext, photo 

etc) are web-applications (wars) running in 
tomcat and completely equal to each other 
(web01 == web02, pay01==pay02, pay01!
=web01). They scale (almost) indefinitely. 

‣ Application-tier nodes are java processes 
(services) running in separate java vms and 
accessible via RMI (Corba, Soap etc). Each 
process (service instance) has its own, unique 
goal and responsibility.

Donnerstag, 20. Mai 2010



Arch II - Node Example
incoming request, http

http http

rmi rmi

administrative, http, ssh

Loadbalancer

 web pool

 web01

ROOT.war

 web02

ROOT.war

 web n

ROOT.war ...

 payment pool

 pay01

payment.war

 pay02

payment.war

 app pool

 app01

userservice

 app00-standby

userservice

profileservice

 app02

chatservice matchingservice

profileservice

chatservice

matchingservice

 DiMe registry registry.war

NAS Database

db01 db02

Donnerstag, 20. Mai 2010



Application tier

Architecture III (nT)

Storage / DB tier

Presentation tier

Rendering and UI

Presentation Logic

ResourcesDatabase (postgres, mysql, etc) RAID, FS

Business Logic

Persistence

Vendor protocol

Suitable for mid range projects, mid/high-
traffic portals.

Scales better.

Performs!

RMI over DistributeMe

presentation, controllers, action, markup

presentation logic and stateful services, per user caching

business logic, object caching

persistence

Optimization tier

Business Logic caching,
mod-proxying

RMI over DistributeMe

Donnerstag, 20. Mai 2010



Optimization Tier

‣ Additional Tier between presentation and 
application tiers.

‣ Main responsibility: reduce load on application 
tier. 

‣ Transparent (invisible) to the presentation layer, 
at least at code level.

Donnerstag, 20. Mai 2010



Optimization tier

‣ Performs (mod) caching.

‣ Increases robustness.

‣ Helps controlling scaleability factors (aka 
bottlenecks).

Donnerstag, 20. Mai 2010



Mod caching / Robustness

web pool

web01 web02 web n

app pool

UserServer

web03

UserServer_proxy1 UserServer_proxy2

virtual (programmed) call

executed call

mod-ing is lineary dividing calls on 
proxies based on call context to 
achieve most linear distribution.
Two most common approaches 
are 
a) mod by parameter (i.e. userid) 
This method allows a proxy to 
perform a 100% cache of a subset 
of the data.
b) mod by source (i.e. servername)
This method reduces the 
consequences of a component 
failure and reduces the number of 
affected nodes
See the Performance Tuning for 
Portals presentation for details on 
caching and moding.

Donnerstag, 20. Mai 2010



Scaleability factors

web pool

web01 web02 web 30

app pool

UserServer

Classical approach, 
factors 1:30

web pool

web01 web02 web 30

app pool

UserServerP1

Optimized approach, 
factors 1:5:30

UserServerP5

UserServer

...

...

...

...
one server

one server

five servers

30 servers 30 servers

Donnerstag, 20. Mai 2010



Scaleability factor
‣ Number of affected components/nodes in case 

of a short outtage of a component/node.

‣ Low scaleability factors indicate robust systems 
which can deal with short peaks and outtage. 
However the system still should be able to 
handle the regular load.

‣ Classic approach with factor 1:30 means that a 
short outtage (for example a gc run) in the 
userserver will affect 30 components.

Donnerstag, 20. Mai 2010



Scaleability factor (II)

‣ Optimized scaleability factor 1:5:30 means that,
a short outtage in a userserver proxy affects 
only 6 webservers and a short outtage in the 
userserver itself only affects the 5 userservice 
proxies which should be capable of handling 
the short outtage internally through caching.

Donnerstag, 20. Mai 2010



Architecture IV (nT)
‣ Scaleability on the front side is reached by the 

nTier architecture and optimization layer 
introduced by architecture III. 

‣ However all deployment models contains a 
single db. 

‣ The goal is now to add an additional separation 
in the db tier.

‣ If you modeled properly - this is a matter of 
deployment, not code.

Donnerstag, 20. Mai 2010



Arch IV - Node Example
incoming request, http

http http

rmi rmi

administrative, http, ssh

 web pool  payment pool

 app pool

 app01

userservice

 app00-standby

userservice

profileservice

 app02

chatservice matchingservice

profileservice

chatservice

matchingservice

 DiMe registry registry.war

NAS

UserDB A

UserDB

UserDB B

UserDB

 static pool

http

 ... pool

http

 WS pool

soap

Loadbalancer

ProfileDB A

ProfileDB

ProfileDB B

ProfileDB

...

...

failover failover

failover

failover

Donnerstag, 20. Mai 2010


